Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers

نویسندگان

  • Jialin Hong
  • Lihai Ji
  • Linghua Kong
چکیده

Article history: Received 25 January 2013 Received in revised form 8 February 2014 Accepted 20 March 2014 Available online 25 March 2014

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Distributed Lagrange Multiplier Based Fictitious Domain Method for Maxwell’s Equations

We consider a time-dependent problem of scattering by an obstacle involving the solution of the two dimensional Maxwell’s equations in the exterior of a domain with a perfectly conducting condition on the boundary of this domain. We propose a novel fictitious domain method based on a distributed Lagrange multiplier technique for the solution of this problem. Perfectly matched layers are constru...

متن کامل

Perfectly matched layers for Maxwell s equations in second order formulation q

We consider the two-dimensional Maxwell s equations in domains external to perfectly conducting objects of complex shape. The equations are discretized using a node-centered finite-difference scheme on a Cartesian grid and the boundary condition are discretized to second order accuracy employing an embedded technique which does not suffer from a ‘‘small-cell’’ time-step restriction in the expli...

متن کامل

An operator splitting scheme with a distributed Lagrange multiplier based fictitious domain method for wave propagation problems

We propose a novel fictitious domain method based on a distributed Lagrange multiplier technique for the solution of the time-dependent problem of scattering by an obstacle. We study discretizations that include a fully conforming approach as well as mixed finite element formulations utilizing the lowest order Nédélec edge elements (in 2D) on rectangular grids. We also present a symmetrized ope...

متن کامل

PML-FDTD in Cylindrical and Spherical Grids

Perfectly matched layers (PML’s) are derived for cylindrical and spherical finite-difference time-domain (FDTD) grids. The formulation relies on the complex coordinate stretching approach. Two-dimensional (2-D) cylindrical and three-dimensional (3-D) spherical staggered-grid FDTD codes are written based on the time-domain versions of the equations. Numerical simulations validate the formulation...

متن کامل

General Closed-Form PML Constitutive Tensors to Match Arbitrary Bianisotropic and Dispersive Linear Media

The perfectly matched layer (PML) constitutive tensors that match more general linear media presenting bianisotropic and dispersive behavior are obtained for single interface problems and for two-dimensional (2-D) and three-dimensional (3-D) corner regions. The derivation is based on the analytic continuation of Maxwell’s equations to a complex variables domain. The formulation is Maxwellian so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 269  شماره 

صفحات  -

تاریخ انتشار 2014